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Abstract 

This thesis describes the value of the free-response receiver operating characteristic 

(FROC) paradigm for dose and image quality optimisation in a niche area of imaging. The 

empirical works discussed in this thesis focus on the diagnostic value of the low-resolution 

computed tomography (CT) images acquired for attenuation correction (AC) – a process 

primarily used to correct for photon attenuation with images produced merely as a 

consequence of the exposure. The potential discovery of incidental findings on these images 

was investigated. 

The observers taking part in the empirical studies were generally lacking in significant 

experience of interpreting CT images. As a consequence it was also deemed valuable to 

investigate the value of the novice observer in free-response studies. A further 

methodological consideration for studies of this kind is consistent and reliable image display 

and FROC data collection. Prototype software, ROCView, was designed and developed to 

make this an easy process and the key functionality and impact is analysed here. 

In addition to the empirical works, two review papers, aimed at the technologists and 

radiographers performing low-resolution CT for AC, are summarised. They explain the value 

of the FROC paradigm and the jackkinfe alternative FROC (JAFROC) analysis method to a 

wide audience in nuclear medicine.  
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Abbreviations and Definitions 

AC Attenuation Correction 
A method to correct for photon attenuation induced artefacts. 

AFROC Alternative Free-response Receiver Operating Characteristic 
A hybrid curve where the trapezoidal area beneath the curve is equivalent to the JAFROC 

figure-of-merit. 
ALARP As Low As Reasonably Practicable 

A principle often used to describe dose optimisation. 
AR Acceptance Radius 

A tool used to classify observer localisations as correct/incorrect. 
AUC Area Under the ROC Curve 

A summary index by which different diagnostic tests can be compared. 
pAUC Partial Area Under the ROC Curve 

A summary index useful for evaluations of high sensitivity or specificity. 
CD Contrast Detail 

(Phantom) Used to provide a simplified observer test using a signal known 

exactly/background known exactly method. 
CT Computed Tomography 

Imaging modality evaluated in this thesis. 

CTDI Computed Tomography Dose Index 
An estimate of the dose delivered in CT. 

DICOM Digital Imaging and Communications in Medicine 
Standard image format used in radiology. 

FPF False Positive Fraction 
1-specificity. 

FROC Free-response Receiver Operating Characteristic 
The method used to capture free-response data. 

HU Hounsfield Unit 
(Scale) A transformation of linear attenuation coefficient measurements where water is 

defined as zero (0) and air is defined as -1000. 
i, j, k Modality, Reader, Case 

Common denotation in ROC/FROC equations. 
JAFROC Jackknife Alternative Free-response Receiver Operating Characteristic 

The figure of merit most frequently associated with free-response methodology. It is the 

probability that a lesion rating exceeds any rating on normal cases. 

LD-LCS Low-dose Lung Cancer Screening 
Using low-dose CT acquisitions in a screening programme. 

LL Lesion Localisation 
A correct localisation of disease on an abnormal case. 
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LLF Lesion Localisation Fraction 
The number of lesions correctly localised divided by the total number of lesions, at each 

threshold. 

MPI Myocardial Perfusion Imaging 
A tomographic imaging procedure to reveal coronary artery disease. Images are frequently 

corrected with CT-based attenuation correction to account for photon attenuation artefacts. 

MRMC Multiple-reader Multiple-case 
Defined as common set of observers interpreting a set of images common to all modalities 

being evaluated. 

NL Non-lesion Localisation 
An incorrect localisation on normal or abnormal cases. 

NLF Non-lesion Localisation Fraction 
The number of non-lesion localisations divided by the number of cases. 

ROC Receiver Operating Characteristic 
A method for measuring the performance of observers and imaging modalities. 

SDT Signal Detection Theory 
Used to analyse the detection and discrimination process of an observer seeing a signal. 

SPECT/CT Single Photon Emission Computed Tomography/Computed Tomography 
A hybrid imaging modality combining functional and anatomical imaging. 

TPF True Positive Fraction 
Sensitivity. 
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Ethical Principles in Medical Informatics 
For medical research the role of human participants in research is summarised by the 

Declaration of Helsinki (World Medical Association, 2013). The interests and wellbeing of the 

research participants must be the primary concern during the research, and while this 

document refers to participants as patients, the same standards should be applied to those 

who participate as observers. 

In terms of medical informatics the systems in place should support research, protect from 

harm and maintain confidentiality (Duquenoy, George, & Solomonides, 2008). This has 

some application to the current body of work. Broadly speaking, ethical issues serve to 

protect the interests and integrity of individuals and uphold standards. In the observer 

studies completed for this PhD by PW it was essential to maintain the confidentiality of all 

the research participants, making sure that any recorded data was not identifiable to them. 

Ethical standards in relation to electronic data and records, based on the code of ethics, 

have been proposed (Duquenoy et al., 2008): 

• Security 

• Integrity 

• Material Quality 
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• Accessibility 

 

Data Protection Act 1998 
The Data Protection Act (DPA) 1998 (Legislation.gov.uk, 1998) is applicable to all observer 

studies. All data processing should be ‘adequate, relevant and not excessive’. It should 

therefore not exceed what is required for a reliable result to be formed, unless there are 

other components to the research. Participants must be given appropriate information to 

enable them to make a reasoned decision about taking part in a study. Consent may be 

required, but explicit (written) consent is only required for sensitive data. 

All participants should also be made aware of the purpose of the data collection, how long 

the data will be kept and what will be done with the data when it has been collected. For all 

empirical works reported in this thesis, participants were told that their data would be used in 

a research project with the intention of publication; it was made clear to all participants that 
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file, to ensure that there was no unauthorised access of data. 
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Working with an anthropomorphic chest phantom has many obvious benefits as well as 
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of reviewing a dose optimisation study that has been conducted on patients (Achenbach, 

Chandrashekhar, & Narula, 2013). The main concern was the repeated exposure of patients 
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based studies. Ascertaining this ‘truth’ can be problematic in patients and recent work cites 

this as a problem in observer performance studies (Kundel, 2006). In phantom work, this is 

much easier to control as the investigators are often responsible for the placements of 

‘disease’. 

 

Acquiring Observer Performance Data at the University of 

Salford 
The overwhelming majority of the observer studies were conducted within the University of 

Salford medical imaging facility. All articles within this PhD by PW were subject to the same 

high standards of ethical requirements, as they were constituted within the University of 

Salford’s ethical framework. All participants were consented prior to participating; this 

included giving a detailed explanation of what was required through use of an information 

sheet and/or an explanatory PowerPoint presentation. Data were stored in an anonymous 

fashion on a password-protected computer. Participants had the option to receive feedback 

on their performance and most took up this opportunity. Observers received a data-sheet 

that could be used in a CPD portfolio; identifying their individual and observer averaged 

performance. Most volunteers benefitted from 2-4 hours education on FROC methodologies. 
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Introduction 

Observer performance has been applied in radiology to assess the diagnostic performance 

of imaging systems and techniques. This type of assessment method is useful for measuring 

diagnostic performance when the observer is considered to be an integral component of the 

imaging system. These methods have become popular and have particular value in 

comparing the performance of existing and new imaging techniques, where the aim is to 

establish if the new technique offers any statistically significant advantage over the current 

gold-standard or best current alternative. 

The receiver operating characteristic (ROC) method has been described extensively 

(Chesters, 1992; Hanley & McNeil, 1983; Hanley, 1989; Kundel, 2006; Metz, 1978; Swets, 

1996) and for many years was the method of choice for observer studies assessing a single 

pathology. The ROC method was a natural successor to signal detection theory (SDT) and 

the original application was in radio detection and ranging (radar) (Manning, 1998). The first 

use of ROC in radiology occurred in the 1960’s (Lusted, 1960) and has since been used in a 

large number of laboratory studies. However, the ROC method is limited by not taking into 

account all the available information that an image contains – specifically it does not deal 

well with multiple pathologies and does not discriminate on the basis of location, where only 

a single rating of confidence can be obtained for each image. 

The free-response ROC (FROC) paradigm was developed to overcome these problems. 

This method is location sensitive and requires observers to localise all suspicious areas of 

an image with precision, and provide a confidence rating for each localisation; the earliest 

implementation of this paradigm was reported in the 1990’s (Chakraborty & Winter, 1990). 

The key methodological aspects of FROC have double effect; not only is this method more 

reflective of the clinical task but it also holds a statistical advantage over traditional ROC 

methods (Krupinski & Jiang, 2008). 

The development of the FROC paradigm and the suitability of it to this research theme have 

been explored in the published works and will be critically examined in this thesis. 
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Rationale 

Advancing technology and new techniques ensure the important role of radiology in the 

diagnosis and management of disease. The non-invasive nature of many imaging tests can 

be preferential for patients and referrers in comparison to interventional or surgical 

procedures, despite the accompanying radiation risk. 

The demand for radiological procedures is ever increasing, with the collective dose of 

computed tomography (CT) increasing by nearly 30% in the UK over a 10-year period (Hart, 

Wall, Hillier, & Shrimpton, 2010). There are persisting concerns about the dose associated 

with CT and the contribution of CT to the total dose received by a single patient (Hara et al., 

2009). This is evident in the United Kingdom, where CT examinations are responsible for the 

highest dose in terms of the total radiation dose delivered (Hart et al., 2010). Additionally, CT 

is the only diagnostic modality where the dose has increased in recent years (Dawson, 

2004). In the United States of America the increasing use of CT has been attributed to an 

increased role in paediatric diagnosis and adult screening, where reduced scanning time has 

been cited as major contributing factors (Brenner & Hall, 2007). 

The other side to the increasing use of CT is the potential clinical benefit. It has been 

reported that a significant increase in the use of CT in emergency care has improved clinical 

decision making. In particular, patients with abdominal pain are more likely to receive a CT 

scan, with an overall reduction in the number of hospitalizations and transfers (Kocher et al., 

2011). 

The use of CT has also developed rapidly in nuclear medicine. The initial use of CT in 

nuclear medicine was to provide attenuation correction (AC) during myocardial perfusion 

imaging (MPI) (Bateman & Cullom, 2005; Malkerneker et al., 2007; Pazhenkottil et al., 

2011). The CT images are acquired as a high photon flux (good statistically in comparison to 

radioactive line sources) transmission map, giving a good representation of tissue 

attenuation. Large volumes of individual projections are acquired to provide a transmission 

measurement of each slice of tissue in the desired volume of the body (Patton & Turkington, 

2008). This can then be used to correct for photon attenuation of radioactive isotopes by 

body structures that are apparent in single photon emission computed tomography (SPECT), 

which is the tomographic imaging mode used in nuclear medicine where planar images are 

acquired at multiple angles around the body area of interest. This is typically 60 planar 

images at 3° increments over 180° for cardiac imaging (Patton & Turkington, 2008). 
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The transmission imaging provided by AC had previously been conducted using a moving 

radioactive line source such as Gadolinium, 153Gd, or Germanium, 68Ge; and while this 

improved the specificity of the technique (Gallowitsch et al., 1998) it is associated with 

several drawbacks in comparison to CT-based transmission imaging for AC. These include 

reduced photon flux, long acquisition times, the need to replace the radioactive line source 

and cross-talk of radiopharmaceutical energies (Zaidi & Hasegawa, 2003). CT-based AC is 

also higher resolution and can provide anatomical detail, but is also associated with a higher 

dose than 68Ge in PET imaging (Wu et al., 2004). 

The use of CT for AC in conjunction with SPECT and positron emission tomography (PET) 

has led to significant improvements in MPI for the diagnosis of coronary artery disease 

(CAD) (Gaemperli, Bengel, & Kaufmann, 2011; Kaufmann, 2009). AC is typically performed 

when images are degraded as a result of patient dependant, non-uniform and occasionally 

focal, photon attenuation. In males this occurs because of the diaphragm and in females 

because of breast tissue (Burrell & MacDonald, 2006). The CT data provide a high quality 

map of attenuation coefficients that are used to correct for radionuclide photon attenuation in 

SPECT and PET (Koepfli et al., 2004; Pazhenkottil et al., 2011). 

Beyond AC, CT is now used routinely for localisation of radioactive foci, with particular 

success in cases of specific tracer uptake and also for diagnosis (Bockisch, Freudenberg, 

Schmidt, & Kuwert, 2009), where PET/CT has embraced this sooner and more universally 

than SPECT/CT. 

Despite the existence of three clear roles for CT in nuclear medicine, the ‘quality’ of CT 

required to accomplish each task is less well defined and there is likely to be overlap 

between the quality/dose of CT required for each role. To amplify this overlap, there is also 

great variation in the capability of the CT systems used to perform AC. The primary focus of 

the empirical work reported in this thesis was to evaluate the potential clinical value of the 

low-resolution CT image that is produced during AC in a range of systems. 

The clinical value of these images is an evolving problem. Early SPECT/CT systems used 

basic CT units designed to provide AC. The quality of the CT images produced was poor, 

and in comparison to a conventional CT image they are likely to have been considered non-

diagnostic. Despite this, some previous work has been completed to assess the diagnostic 

value of these low-resolution CT images. Using an early SPECT/CT system, the low-

resolution CT images of 200 consecutive patients undergoing MPI with AC were evaluated 

for incidental findings. Large numbers (234 abnormalities) were found, with some considered 

of major clinical significance that were previously unknown to the patient (Goetze, Pannu, & 

Wahl, 2006). A large number of abnormalities were reported in and around the thorax. 
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CT technology in nuclear medicine has improved since the work of Goetze et al (2006) was 

completed and the images produced during CT-based AC are improving in quality. This may 

have prompted a shift in the perception of the value of these images. The Ionising Radiation 

(Medical Exposure) Regulations, 2000, Regulation 7 require that a clinical interpretation is 

completed for each exposure (Department of Health, 2000) – this implies that the CT images 

produced during AC should be reported. This has recently gained some support, with 

recommendations from The British Nuclear Medicine Society now recommending that CT 

images should be reported (Arumugam, Harbinson, Reyes, Sabharwal, & Tonge, 2012). 

However, they limit this to images considered ‘diagnostic quality’ and appear to exclude ‘low-

dose’ or ‘low-resolution’ images from this recommendation. The work presented in this thesis 

tests the strength of this guidance by assessing a range of SPECT/CT systems, with 

different CT unit capability, using the latest observer performance methods. 

In the context of dose optimisation, this guidance, with the knowledge of the potential 

discovery of incidental findings, has led to some difficult and controversial decisions 

regarding the quality of the CT exposure used for AC. The trade-off concerns the extra 

information that may be gained by performing a higher dose scan against the original clinical 

question and the primary reason for the exposure – AC. This is further complicated by the 

fact that an adequate attenuation map (mu; µ) can be created, irrespective of the exposure 

parameters used (Kamel et al., 2002; Preuss et al., 2008; Wells, Soueidan, Vanderwerf, & 

Ruddya, 2012; Xia, Alessio, & Kinahan, 2009). 

The advantage of using a higher-dose (if not diagnostic) CT acquisition for AC with the 

premise of detecting incidental findings in MPI is unclear. Dose optimisation is a key aspect 

of radiology and all examinations should be dose efficient, conforming to the as low as 

reasonably practicable (ALARP) principle. 
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Objectives 

The empirical work evaluated in this thesis was completed using the free-response receiver 

operating characteristic paradigm and the latest analysis methods that are associated with 

these observer performance methods. This thesis will discuss the suitability of these 

methods for the research reported and evaluated in this thesis. The research was facilitated 

by prototype software that allowed multiple concurrent users to complete image evaluations 

in any location since it is run from a web-based platform. The key functionality and suitability 

of the software will be critically evaluated. 

The focus of the empirical works was to evaluate the diagnostic value and potential 

optimisation of radiation dose of the low-resolution CT images acquired during AC. The 

observer task in this research was often completed by participants that would be considered 

novice, in part because of the difficulties in accessing large numbers of expert observers. 

The publications reported in this thesis are critically evaluated for their potential impact and 

develop the following objectives for critical evaluation: 

 

1. Examine the fundamental principles of measuring observer performance with a focus 

on the free-response paradigm. 

 

2. Develop a consistent and reliable method for image display and response capture in 

free-response studies. 

 

3. Assess the potential for lesion detection and dose and image quality optimisation in a 

range of CT and SPECT/CT systems. 

 

4. Assess the role of the novice observer for suitability in observer performance 

research. 
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Objective 1 

 

Examine the fundamental principles of measuring observer 

performance with a focus on the free-response paradigm. 
 

 

In order to proceed with the research it was necessary to develop a strong underpinning 

knowledge of observer performance, with a particular emphasis on the methods and 

analysis of data. This review begins with a brief overview of signal detection theory before 

making the natural step on to the ROC and FROC paradigms. 

The following topics will be explored: 

 Signal Detection Theory (SDT) 

 Receiver Operating Characteristic (ROC) Analysis 

 ROC Rating (Confidence) Scales 

 ROC Curves 

 Multi-Reader Multi-Case Analysis 

To proceed with the investigation of low-resolution CT using the proposed method it was first 

important to develop a broad underpinning knowledge of observer performance. This begins 

by reviewing the development of receiver operating characteristic methods, understanding 

the limitations and embracing the recent developments in the methodology that have led to a 

statistically powerful and clinically relevant method of analysis. 

The text will look at the key methodological aspects of the free-response paradigm and 

explore the empirical construction of the curves associated with free-response methods and 

the figures of merit that are used in statistical testing. Two key papers (4 and 6) have 

demonstrated and supported this process. The choice of journals for publication was vital, 

since the aim was to raise awareness of, and explain, the important role that observer 

performance plays in the evaluation of imaging techniques to two key groups: Radiographers 

and Nuclear Medicine Technologists. 

Signal Detection Theory 
For many years signal detection theory (SDT) has been used as a theoretical framework to 

understand decision making under uncertainty (Jang, Wixted, & Huber, 2009). SDT is used 
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to analyse the detection and discrimination process of an observer seeing a signal (i.e. in a 

background of increasing noise), while attempting to reveal the decision criterion (threshold) 

adopted by the observer during the detection process (Jäkel & Wichmann, 2006). 

SDT research began with an application of the Rose model using a contrast detail (CD) 

phantom in fluoroscopy (Burgess, 2010). This was the first attempt at dose and image 

quality optimisation in radiology, where the CD phantom was used to assess observer 

performance. Albert Rose developed the absolute scale of quantum efficiency to evaluate 

system performance and what is now known as the Rose model to assess signal 

detectability in human observers (Burgess, 2010). These methods have maintained their 

popularity in medical imaging. Applications of detectability of sharp-edged objects in a 

uniform background of changing noise are still being used in quality control for fluoroscopy, 

radiography, mammography (Kotre, 2006) and nuclear medicine (Rzeszotarski, 1999), 

Figure 1. The type of test described is commonly referred to as a signal known exactly / 

background known exactly (SKE/BKE) test (Burgess, 2010; Kotre, 2006). 

In the following example, the observer is tasked with deciding which size and density of 

sharp-edged object can be detected. Once this has been completed for a range of object 

sizes and levels of image noise, contrast detail curves can be plotted to show detection rates 

at different levels of contrast and object sizes, Figure 2. This example reveals that reduced 

counting statistics in nuclear medicine have a negative impact on object detectability due to 

a loss of spatial frequency. Theory supports the findings that noise impairs image 

interpretation (Manning, 1998). 
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Figure 1: Contrast detail images produced by a planar image acquisition on a gamma camera in nuclear 

medicine. The Rose model predicts the line of demarcation for object detection; a diagonal line from the lower left 

to upper right of each image – objects above this line are barely detectable The level of image noise dictates the 

position of the diagonal line. Image reproduced from Rzeszotarski (1999).  

 
Figure 2: The contrast detail curves for different counting statistics, as illustrated in Figure 1. The sizes of object 

above each line indicates those that can be detected. In this example, smaller and lower contrast objects can be 

seen with increasing image counts. Image reproduced from Rzeszotarski (1999). 
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Despite the value of the SKE/BKE test in radiology and the obvious benefit of a low cost and 

simple solution to comparing system performance, it is questionable whether the results can 

be extrapolated into the clinical setting as a prediction of detectability (Kotre, 2006). 

Furthermore, no visual search is required. Where there is a low threshold for detection the 

known location of the signal may contribute to detection rates for objects that otherwise 

would have been inconspicuous. SDT was a natural stepping-stone toward the development 

of receiver operating characteristic (ROC) analysis for the observer performance in radiology 

(Burgess, 2011). 

 

The Limitations of a Binary Decision-Making Process 
When an observer interprets a series of images with signal detection as the primary 

objective, there are four possible outcomes of each interpretation: true positive (TP), true 

negative (TN), false positive (FP) and false negative (FN). In this basic example the observer 

is making a simple decision about the presence of a signal – either it is present or absent. 

When the observer completes this task they use a decision threshold to determine whether 

the signal is present of not. For a single decision threshold, a basic binary (yes/no) response 

is made. This yields a single measure of sensitivity and specificity. However, this decision 

threshold is variable for different observers and tasks. It is this variation that can lead to 

different estimations of sensitivity and specificity for the same test (Obuchowski, 2005). A 

further drawback of this is that it is difficult to compare two different summary figures (i.e 

sensitivity and specificity). 

In radiology a single decision threshold may be acceptable for cases that are easily 

classified as normal or diseased. However, the simple cases do not generally cause major 

problems in radiology; it is the difficult cases that require greater attention, where the 

boundaries between error and acceptable variation are less clear (Robinson, 1997). 

Furthermore, a single value of sensitivity and specificity does not account for an imaging 

system’s ability to distinguish between actually negative and actually positive patients (Metz, 

2006). 

The receiver operating characteristic (ROC) method builds on the limitations of single 

decision threshold, using a confidence scale to rate the perceived likelihood of disease 

presence (Metz, 2006; Obuchowski, 2005). This provides an analysis through the entire 

range of sensitivity and specificity values, over which the ROC curve is plotted (Zou, 

O’Malley, & Mauri, 2007). The multiple thresholds used in ROC provide a single value (the 

figure of merit) which can be more easily compared. 
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Receiver Operating Characteristic Analysis 
The receiver operating characteristic (ROC) method was originally used for RADAR 

detection in the 1950’s prior to its first application in radiology in the 1960’s (van Erkel & 

Pattynama, 1998; Vining & Gladish, 1992). ROC methods focus on the correct classification 

of disease and are frequently used to assess the diagnostic accuracy of imaging techniques 

in which the observer (frequently a radiologist) is considered an integral part of the system 

(Chakraborty, 2002). ROC methods are particularly useful for comparing a new imaging 

technique with an existing ‘gold-standard’, when the true disease status of the patient is 

known (Zou, Liu, Bandos, Ohno-Machedo, & Rockette, 2012). The popularity of the ROC 

method arises from the ability of the method to provide a description of diagnostic accuracy 

for a full range of sensitivity and specificity of a diagnostic test (Gur et al., 2010; Metz, 2006). 

When comparing the diagnostic accuracy of two tests a detectability index, such as the area 

under the ROC curve (AUC), is used to show the level at which the two diagnostic tests are 

different. 

Rating scales are used in ROC analysis to allow an observer to provide a numeric rating to 

an image based on the perceived likelihood that disease is present (Chakraborty, 2002). 

These are frequently on a scale of 1 to 5, described as ordinal or discrete, where an 

increasingly large value signifies an increased level of confidence in the observer’s decision. 

Rating scales can also be quasi-continuous, which can provide a more precise measure of 

diagnostic accuracy if used well (Hadjiiski, Chan, Sahiner, Helvie, & Roubidoux, 2007). 

Neither ordinal nor quasi-continuous scales are suitable for all tasks (Rockette & Gur, 2008) 

and the type of scale used must compliment the diagnostic task. Each value on a rating 

scale denotes a different threshold value of sensitivity and specificity (Metz, 2006). The use 

of a rating scale allows a measure of diagnostic performance that is independent of both 

disease prevalence and decision threshold. 

In an ROC study each image is rated and a score of ‘1’ is often reserved for those images 

that the observer believes to be disease free; ratings 2-5 indicate an increasing suspicion of 

disease for each scored image. For future reference, the ratings associated with ROC 

analysis will be classed as case-based decisions. 

 

The ROC Curve and Area Under the Curve 
The ROC curve is a simple graphical method of displaying the diagnostic accuracy of a test, 

as discovered during ROC analysis (Zou et al., 2012). It provides a useful visual comparison 

of the performance of different tests or observers. An ROC curve is produced for each 

imaging modality or diagnostic test, and each observer being evaluated. The ROC curve is a 

plot of true positive fraction (TPF, the proportion of correct decisions on actually abnormal 
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cases) against false positive fraction (FPF, the proportion of incorrect decisions on actually 

normal cases) (Chesters, 1992; Vining & Gladish, 1992; Zanca et al., 2012). This is a display 

of the relationship between sensitivity and specificity for a full range of decision thresholds – 

as determined by the confidence scale used. 

For statistical analysis it is common to summarise the ROC curve using the AUC index; it is 

also frequently referred to as Az (Jiang, Metz, & Nishikawa, 1996), but this is an estimate of 

the binormal model estimation only. It is a standardised measure of accuracy of combined 

observer and modality performance (Chakraborty, 2002). The AUC is defined as the 

probability that a randomly selected abnormal case has a test result more indicative of 

abnormality than that of a randomly chosen normal case (Chesters, 1992; Hanley & McNeil, 

1982). AUC estimated by the trapezoidal area is equivalent to the Mann-Whitney statistic 

(Zou, Tempany, Fielding, & Silverman, 1998). 

All ROC curves include the trivial operating points of 0,0 and 1,1 that could be calculated by 

using the strictest and most lax decision thresholds. The number of points on the confidence 

scale determines the number of non-trivial operating points. Typical ROC curve appearances 

are shown in Figure 3. A perfect test runs from 0,0 to 0,1 and to 1,1. This covers the entire 

plot area and the AUC is equal to 1. The chance diagonal represents the curve of a test that 

is no better than random guessing, which means the test is as likely to be incorrect as it is 

correct. Tests with high diagnostic accuracy are expected to have an AUC of around 0.9; 

those with moderate accuracy have an AUC of around 0.75 (Obuchowski, 2000). 

 

 
Figure 3: Typical ROC Curve appearances. 
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Measurements of full AUC give an overall probability that diseased and non-diseased cases 

are being correctly classified. However, it can be valuable to look at only a certain portion of 

the curve, known as the partial area. 

 

Partial Area 
The partial area (pAUC) is frequently defined as the area between two false positive points 

on the ROC curve (x-axis) (Obuchowski, 2000); this looks at specificity. To look at the high 

sensitivity portion of the curve, it is the area between two true positive points (y-axis) that 

should be measured. The case has been made for a partial area measure for tests that 

require high sensitivity, such as mammography (Jiang et al., 1996). Typically a 

measurement of partial area is defined as the area to the left of a specified FPF value to 

measure specificity, or above a specified TPF to measure sensitivity (Zanca et al., 2012), 

Figure 4. 

A full AUC summary implies that all decision thresholds are equally important. Additionally, it 

can be distracting to rely on the full AUC measurement when comparing two tests with a 

similar figure-of-merit (FOM), since each test may reveal better performance at different 

portions of the ROC curve (Zou et al., 2007). The AUC is a FOM to quantify observer 

performance for detection tasks and is directly related to the two-alternative forced choice 

(2AFC) test (Clarkson & Shen, 2010). 

The chest X-ray (CXR) can be used to describe an example where a full area measure may 

not be optimal. When looking for solitary pulmonary nodules you want to ensure that the test 

has high sensitivity, since overlooking a lesion may have serious consequences for the 

patient. In this situation it may be desirable to look at the high sensitivity portion of the curve. 

Conversely, it may be of interest to ensure that the test has high specificity; since it would be 

undesirable to have patients undergoing high dose follow-up examinations unnecessarily. 

Partial area can be very useful for comparing two tests that have intersecting ROC curves 

and a full AUC that is statistically similar. In this situation it can be problematic to determine 

which is the better test. An example of intersecting ROC curves and the value of partial area 

is presented in Figure 4. Despite the advantages of the partial area measurement, in the 

clinical environment one must be mindful of the real clinical impact of one test over another 

when interpreting ROC curves. It may be that availability, cost and dose become 

considerations that are of equal importance. 
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Figure 4: Two intersecting ROC curves. Despite having statistically similar summary indices (AUC) the two 
curves have areas that outperform each other. The vertical grey band below the curves shows that Test A has 
better specificity. The horizontal grey band to the right of the curves shows that Test B has better sensitivity. 

 

ROC Plot Example 
Consider the example of a series of chest X-ray (CXR) images, 100 normal and 100 

abnormal (containing a solitary pulmonary nodule). The observer task is to classify the cases 

using a rating scale of 1-5, where an increasing number represents a decision of increasing 

confidence (Table 3). The sensitivity and specificity is calculated for each decision threshold 

using the standard formulae. This is then converted to TPF and FPF so that the ROC curve 

can be plotted.  

The plotted example shown in Figure 5 is described as the empirical ROC curve, since it is 

connected with straight lines. The AUC of the empirical curve can be calculated using the 

trapezoidal rule, where empirical estimations have shown that the AUC is equivalent to the 

Mann-Whitney U-statistic (Zou et al., 1998). Note the difference to the curves displayed in 

Figure 3 and Figure 4. These curves are smooth and continuous, described as fitted, 

representing the correctly modelled ROC curve. However, curve fitting should only be used if 

there is independence between cases (Chakraborty, 2011). In the empirical work described 

in my PhD by PW no curve fitting has been applied for two reasons; (i), the cases are not 

independent as they arise from a single phantom, and (ii), the analysis software does not 

currently support curve fitting. 
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The operating points in Table 3 produce an empirical curve with an AUC of 0.794, which can 

be calculated using the trapezoidal rule. If independence of cases is assumed and the curve 

is fitted using maximum likelihood estimation by a web-based calculator (Eng, 2014) then the 

AUC is 0.804, Figure 6. Typically, a computer program will estimate empirical or parametric 

area by numerical integration, which in the case of empirical estimations by the trapezoidal 

rule, tends to underestimate the true value (Krzanowski & Hand, 2009). 

 

Rating Labels 1 2 3 4 5 TOTALS 

TP 8 12 22 26 32 100 

FP 33 37 15 11 4 100 

 >1 >2 >3 >4   

Sensitivity (%) 92 80 58 32   

Specificity (%) 33 70 85 96   

TPF (Sens.) 0.92 0.80 0.58 0.32   

FPF (1-Spec.) 0.67 0.30 0.15 0.04   

 

Table 3: Example data of 200 CXR images, with 50% containing a solitary pulmonary nodule. Observer decisions 
are distributed across the scale in the expected manner, with the majority of diseased cases scored with high 
confidence and the majority of normal cases scored with low confidence. 

 

Figure 5: The ROC curve plotted from the operating points calculated in Table 3. 
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Figure 6: The fitted ROC curve from the rating data in Table 3. 

 

The data in Table 3 have been used to perform curve fitting. If the data are not normally 

distributed a parametric calculation (fitted) of area may be misleading and the empirical 

method is preferable (Krzanowski & Hand, 2009). 

 

Free-response Receiver Operating Characteristic Analysis 
The free-response receiver operating characteristic (FROC) paradigm was first introduced to 

radiology in the late 1970’s (Bunch, Hamilton, Sanderson, & Simmons, 1978). The method 

then became further developed by the 1990’s (Chakraborty & Winter, 1990). It seeks to 

overcome some of the limitations of traditional ROC analysis by incorporating location 

sensitive data into the analysis. ROC methods are limited due to an inability to deal with 

multiple disease sites effectively; in addition it is also not concerned with localisation and as 

such it is possible, indeed likely, that false identifications are treated as true identifications on 

diseased cases. 

The FROC method shows greater consideration of the radiological search model, where a 

global opinion of an image is formed by the observer’s peripheral vision. Areas of the images 

deemed suspicious are then given greater attention, where the observer must apply their 

decision threshold for disease. Visual search has previously focussed on detection but this is 
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not as straightforward in the clinical setting due to an unknown priori assumption of disease 

(Chakraborty, 2006). 

The FROC method gives due consideration to this and allows observers to make multiple 

localisations of disease in each case (Gur & Rockette, 2008); this means that a single case 

can contain both correct and incorrect localisations (Chakraborty, 2002). The key aspect of 

the FROC method is the ability to reward correct localisations and penalise incorrect 

localisations, making efficient use of location information (Chakraborty, 2011b). This method 

can have more clinical relevance than the ROC paradigm for focal disease but is a 

demanding perceptual task for the observer (Chesters, 1992). 

It is relevant to acknowledge some important differences to the ROC paradigm, specifically: 

• Cases can contain multiple ratings in FROC studies; only a single rating for each 

case in ROC studies 

• Cases do not have to be ‘rated’ if the observer believes the case is disease free; a 

rating is always applied in ROC 

• Individual localisations are classified as correct or incorrect by a proximity criterion 

and the risk of false localisations being incorrectly classified is minimal 

 

‘Mark-Rating’ Pairs 
Under the FROC paradigm all suspicious areas of an image that exceed the observer’s 

reporting criteria threshold are localised; this is termed a ‘mark’. A confidence score 

accompanies each mark, in the same way that an entire case is scored in the ROC method; 

this is termed the rating. It can be normal for a series of ‘mark-rating’ pairs to be produced 

for each case (Chakraborty & Yoon, 2008). ROC studies result in case-based decisions, 

whereas FROC studies produce perceived lesion-based decisions. 

 

Proximity Criterion 
For a FROC study to be reliable, all localisations should be within a clinically acceptable 

distance from the true site of disease (Chakraborty, 2002). Localisations that are close 

enough to the true site of disease are classified as lesion localisation (LL) and those that are 

too far from the true site are classified as non-lesion localisation (NL) (Chakraborty, 2008; 

Zanca et al., 2012). While it is easy to understand LL marks, NL marks can occur for two 

reasons, (i) inadequate proximity to the true disease site; and (ii) a failure to identify a lesion. 

The clinically acceptable distance, which will vary on the type of pathology present in the 
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study, is known as the proximity criterion (Chakraborty, 2006). The choice of criterion is 

important; while it is useful to allow some tolerance for localisations due to hand jitter 

(observer error in localisation), it must be remembered that the size of the criterion will have 

an effect on the figure of merit – less strict criteria lead to an inflated figure of merit (Gur et 

al., 2008). 

One of the more common criteria used is the acceptance radius. This is applicable to studies 

of small spherical lesions, as described in Papers 2, 3, 5 & 7, where the radii length 

emanates from the centre of the lesion. For this type of criterion it has been recently 

recommended that the size of acceptance radius should be based on the largest lesion in 

the study (Haygood et al., 2012). It is also noted that the proximity criterion should be similar 

for the modalities being compared as a larger value for one modality may cause a bias 

(Chakraborty, 2011b). This can be a complicated issue and it may require that data be 

analysed with different sizes of acceptance radii if, for example, the resolution of the imaging 

modalities being compared is different. The efficacy of this has been explored in Paper 5. 

 

The FROC Curve 
The FROC curve is a plot of non-lesion localisation fraction (NLF, the total number of NL 

ratings above a threshold divided by the total number of images), against the lesion 

localisation fraction (LLF, which is the total number of LL marks above a threshold divided by 

the total number of lesions) (Chakraborty, 2010; Zanca et al., 2012). To clarify, the NLF (x-

axis) is normalised to the number of cases and the LLF (y-axis) is normalised to the number 

of lesions (Chakraborty, 2011a). The FROC curve is therefore defined as the plot of 

probability of LL against the mean number of NL marks per image as the threshold is 

adjusted (Chakraborty & Yoon, 2008). 

The FROC curve (Figure 7) always starts at the origin (0,0) and ends at coordinates of (λ,ν), 

where λ is the mean number of noise sites (no lesion) per image and ν is the probability that 

a lesion is considered for marking (Chakraborty & Yoon, 2008). The FROC curve can have 

value for determining whether the observer is making full use of the rating scale; a steep 

start to the curve indicates high confidence and the curve should approach a plateau 

towards the end of the curve (Chakraborty, 2011a). The FROC curve can extend 

continuously and as a result the area below the curve cannot be effectively measured to 

provide a summary index. The FROC curve of a perfect observer has area of zero, and 

according to the model ends at a finite point and does not extend to an abscissa of unity. 

 

 17 



Ph.D. Thesis by Published Works University of Salford 
 

The Alternative FROC (AFROC) Curve 
The AFROC curve is a hybrid plot of the ROC and FROC curves. It takes the x-axis from the 

ROC curve, FPF, and the y-axis from the FROC curve, LLF. On the AFROC curve the FPF 

is the fraction of diseased cases with NL marks. The AFROC curve has much more value 

than the FROC curve since it is contained to a plot area of one (1). The area under the 

AFROC curve defines the reward for LL marks and penalises for NL marks on the basis of 

the confidence score (Haygood et al., 2012). Additionally, the trapezoidal area of the 

empirical AFROC curve is equivalent to the jackknife AFROC (JAFROC) figure of merit – 

frequently used in the analysis of FROC data. 

Raw FROC Data for Curve Construction 

Case Lesions LL Ratings NL Ratings Highest Rating 

1 1 4   - 4 

2 1 -   - 0 

3 1 3   - 3 

4 1 9   - 9 

5 1 10   - 10 

6 2 3 -  - 3 

7 0 -   - 0 

8 1 -   3 3 

9 1 -   5 5 

10 3 4 - - 3 4 

11 3 6 2 - - 6 

12 3 10 - - - 10 

13 1 10   3, 7 10 

14 1 8   8 8 

15 2 -   - 0 

16 2 -   - 0 

17 3 3 5 - - 5 

18 2 10 8  3 10 

19 0 -   - 0 

20 0 -   - 0 

21 0 -   - 0 

22 0 -   - 0 

23 0 -   6 6 

24 0 -   - 0 

25 0 -   - 0 

26 0 -   - 0 

 

Table 4: Raw FROC data is presented, listing the LL and NL ratings and also the highest rating, regardless of 
classification. These values can now be binned to allow curve construction. 
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Constructing Curves from FROC data 
Three types of curve can be constructed from FROC data. This will be illustrated using an 

example from Paper 5. The raw FROC data for a single observer is presented in Table 4. In 

this study there were 26 cases, 17 abnormal cases containing 29 lesions and 9 normal 

cases. Data are then binned (placed into the interval confidence rating and summed). This is 

useful if there is a requirement to plot an ROC curve alongside the FROC and AFROC 

curves. This may be advantageous if wishing to compare performance on the basis of 

lesion-based and case-based decisions. In order to do this from FROC data, one must 

determine what the highest rating is on each image – it is the highest rating from which the 

ROC curve can be inferred. For TP results the highest rating is the highest rating of all LL 

and NL marks on a case; for FP results it is the highest NL rating, since there are no LL 

ratings on normal images. This process is also required for AFROC curve construction since 

this is a plot of LLF against FPF. The operating points of a highest rating inferred ROC curve 

are displayed in Table 5. 

 

Value Confidence Score / Number of Observer Decisions 

 0 1 2 3 4 5 6 7 8 9 10 

Lesion 

True Positive 

(TP) 

3 0 0 3 2 2 1 0 1 1 4 

No Lesion 

False Positive 

(FP) 

8 0 0 0 0 0 1 0 0 0 0 

Calculation of Operating Points 

Threshold 

Sensitivity 

(%) 

 ≥1 ≥2 ≥3 ≥4 ≥5 ≥6 ≥7 ≥8 ≥9 ≥10 

100 82.4 82.4 82.4 64.7 52.9 41.2 41.2 35.3 29.4 23.5 

Specificity 

(%) 
0 88.9 88.9 100 100 100 100 100 100 100 100 

True Positive 

Fraction 

(TPF) 

1 0.824 0.824 0.824 0.647 0.529 0.412 0.412 0.353 0.294 0.235 

False Positive 

Fraction 

(FPF) 

1 0.111 0.111 0.111 0.111 0.111 0 0 0 0 0 

 

Table 5: The raw FROC data from Table 4 has been binned and operating points calculated for each decision 
threshold. 
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The operating points for a FROC curve are calculated in a similar way to those for a ROC 

curve, but they are normalised to a different denominator. The LLF is normalised to the 

number of lesions while the NLF remains normalised to the number of cases. The important 

difference between the calculations of the operating points for the FROC curve (Table 6) is 

that it accounts for all the ratings made in each image, whereas the operating points for the 

ROC curve account for the highest rating made only. 

Value Bin Number 

 0 1 2 3 4 5 6 7 8 9 10 

Lesion 

Localisation 

(LL) 

14 0 1 3 2 1 1 0 2 1 4 

Non-Lesion 

Localisation 

(NL) 

- 0 0 4 1 1 1 1 1 0 0 

Calculation of Operating Points 

Threshold - ≥1 ≥2 ≥3 ≥4 ≥5 ≥6 ≥7 ≥8 ≥9 ≥10 

Lesion 

Localisation 

Fraction (LLF) 

- 0.517 0.517 0.483 0.379 0.310 0.276 0.241 0.241 0.172 0.138 

Non-Lesion 

Localisation 

Fraction 

(NLF) 

- 
0.308 0.308 0.308 0.154 0.154 0.115 0.077 0.038 0.000 0.000 

 

Table 6: The FROC curve operating points calculated from the raw FROC data. Note that this includes all ratings 
(LL and NL) and not just the highest rating. Therefore there are 35 ratings used in these calculations compared to 
26 for the highest rating inferred ROC calculations. 

Value Operating Points 

Lesion 

Localisation 

Fraction (LLF) 

1.000 0.517 0.483 0.379 0.310 0.276 0.241 0.172 0.138 0.000 

False Positive 

Fraction (FPF) 
1.000 0.111 0.111 0.111 0.111 0.111 0.000 0.000 0.000 0.000 

 

Table 7: The unique operating points for the AFROC curve for the FROC data in Table 4. 

 

The operating points of the AFROC curve (Table 7) for this single observer example can be 

extracted from Table 5 and Table 6. Data were crosschecked against JAFROC software 

version 4.2 (www.devchakraborty.com) for confirmation of accuracy. 
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Figure 7: The three curves produced from the raw FROC data in Table 4; A, the highest rating inferred ROC 
curve; B, the FROC curve; and C, the AFROC curve. Operating points are marked on all curves. The area under 
the ROC curve is 0.853 and the area under the AFROC curve is 0.703. 
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Data Analysis 
The previous examples have evaluated the data and curves produced by a single observer 

and a single imaging modality. When conducting an observer performance study it is normal 

to use a group of observers who interpret all images from all the imaging modalities being 

compared. This type of design is referred to as multi-reader multi-case (MRMC) (Zanca et 

al., 2012). Different types of analysis are presented for ROC and FROC data. 

 

Multi-Reader Multi-Case (MRMC) Analysis 
The aim of conducting an MRMC study is to reduce the influence of observer experience 

and variability in the difficulty of the images being interpreted such that any observed 

difference between the modalities being compared is not masked (Chakraborty, 2011b). It is 

optimal to generate a result that is applicable to the populations of observers and cases; 

however, it is important to note that this was not possible in the work reported in this thesis, 

since it is not possible to report results to a population of phantoms. Despite this, the 

statistical power is good since the use of a phantom removes the influence of case 

variability. There are two well-known methods for MRMC analysis, (i) the Dorfman-Berbaum-

Metz (DBM) method, and (ii) the Obuchowski-Rockette (OR) method. All the analyses in this 

work have employed the DBM method and this will be the focus of the discussion. However 

the DBM and OR methods are equivalent and are exactly equal when the jackknife method 

is used (Hillis, Berbaum, & Metz, 2008). 

 

The Dorfman-Berbaum-Metz Method 
The DBM-MRMC method is the most commonly applied method in ROC analysis, where the 

AUC is used as the FOM and data are tested using analysis of variance (ANOVA) 

(Chakraborty, 2011b; Zanca et al., 2012). The DBM method separates the variables of case 

variance and the variance within and between observers to assess whether the observed 

difference is caused by the observers or the cases of the study (Kundel & Nodine, 2010). 

This is known as the jackknife procedure, where pseudovalues are calculated by leaving out 

one case at a time and then looking at the difference in accuracy estimates between the 

estimate of all data and with that case removed (Hillis, 2010). For ROC analysis the AUC 

pseudovalue for case k, denoted by Yijk is: 

 

 

Yijk = cA ˆ U Cij − (c −1)A ˆ U Cij(K )
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Where c is the number of cases, AÛCij is the AUC estimate for modality i and reader j 

computed for ALL data. AÛCij(k) is the estimate with case k removed (Hillis, 2010). 

The number of pseudovalues is determined by the multiplication of ijk; for example, an ROC 

study of two imaging modalities (i), five observer (j) and fifty cases (k) would generate 500 

psuedovalues. A random effect ANOVA is then applied to the series of dependant variables 

(pseudovalues). Modalities are treated as a fixed factor and observers and cases are treated 

as random such that the results can be applied to the populations. 

Once the model has been estimated the next natural step is to use data to determine 

whether the modalities being compared have statistically different diagnostic performance. 

Variance components typically of , observer factor,  case factor, and both  and  

as modality-observer and modality-case factors respectively, show the variability in the 

samples. As an example, the variability within the case sample ( ) arises from the fact that 

some cases are easier to interpret than others. For  it defines whether a particular case 

causes more variability in one modality than another. Finally, an error term is represents the 

residual variability of ijk contributions to the pseudovalue,  (Chakraborty, 2011a). 

The variance components are estimated via ANOVA, which determines whether the relative 

difference between modalities is due to chance. The final outcome of the analysis is still a 

single figure of merit for each modality (and observer). The benefit of this method is 

revealing the individual contribution of each case; removing a high scored diseased case or 

a low scored normal case will cause the pseudovalue to increase – the converse is true for a 

low scored diseased case or high scored normal case (Chakraborty, 2011a). 

After the jackknife procedure is complete, and the overall figure of merit calculated it is 

necessary to calculate the 95% confidence intervals. The Fisher F-statistic is calculated with 

a p-value, where the p-value is the probability that the F-statistic is larger than the observed 

value (Chakraborty, 2011a). The 95% confidence interval tells us that with 95% certainty the 

figure of merit is between an upper and lower boundary, for example a θ of 0.602 with limits 

of 0.549 and 0.655 reveals that the value lies between these limits with 95% certainty. 

However, it does not mean that 95% of the sample data is between these limits. The 

calculation of confidence intervals is performed with the following equation: 
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where  is the mean of the sample, Z is a constant derived from the t-distribution with n-1 

degrees of freedom (t-distribution 20DF, Z=2.086), S is the best estimate of population 

standard deviation and n is the number of values in the sample. For the example above, 

0.6022409 (0.54959674,0.65488505) the equation is as follows: 

 

0.602 ± 2.086
0.116

21
 

for a mean θ of 0.602, a standard deviation of 0.116 in a sample of 21 (n) observers. This 

calculation derives lower and upper 95% confidence intervals of 0.54959582 and 

0.65488597, correct to five decimal places for random readers and fixed cases. 

 

Jackknife Alternative Free-Response Receiver Operating Characteristic 

(JAFROC) Method 
The JAFROC method is the equivalent method for analysing free-response rating data. The 

JAFROC figure of merit is the trapezoidal are under the AFROC curve, θ. The JAFROC 

figure of merit is defined by: 

 

 

Where Xi is the highest noise rating (mark on a normal case) for a case i, Yj is the rating for 

the jth lesion, NN is the number of normal cases, and NL is the number of lesions. The psi (ψ) 

function is the comparison of the highest rated noise rating and the lesion rating 

(Chakraborty, 2010c). For the ψ function, if Xi (abnormal) is greater than Yj (normal) then 

ψ=1; if Xi is less than Yj then ψ=0; if they are equal ψ=0.5. It therefore follows that the 

JAFROC figure of merit is defined as the probability that lesions ratings (LL marks) are rated 

higher than all noise sites (NL marks) on normal images (Chakraborty & Berbaum, 2004). 

Since the free-response method collects location information for multiple mark-rating pairs, it 

offers an advantage over ROC analysis on normal cases since the highest rated NL is 

considered a more stable value of multiple localisations used on normal cases; additionally, 

NL marks on abnormal images are not used. Remember that the AFROC curve is a plot of 

LLF (LL marks on abnormal cases) against FPF (normalised to cases). However, multiple 

lesions on abnormal cases each carry their own rating; missed lesions and low confidence 

LL marks reduce the LLF and thus the area under the AFROC curve (Chakraborty, 2010b). 
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The significance testing procedure is identical to the DBM method previously described. The 

only difference to the DBM procedure for ROC analysis is the figure of merit used; ROC 

figure of merit is the AUC whereas the JAFROC figure of merit is θ (theta) (Chakraborty, 

2010a) and each case is represented by a single pseudovalue, despite individual cases 

containing multiple mark rating pairs. The similarities are recognised by the pseudovalue 

denotation in JAFROC analysis: 

 

 

Where the pseudovalue for each modality i, observer j and case k is defined by PVijk, NT is 

the total number of cases, θij is the figure of merit for modality i and observer j for all data, 

and θij(k) is the figure of merit with case k removed – identifying the dependence of each case 

(Chakraborty, 2010c). 

 

Comparing Figures of Merit 
Visual inspection of ROC/AFROC curves can be valuable for comparing the diagnostic 

performance of different tests if they are obviously different. As previously mentioned this is 

easy when the sensitivity and specificity of one test exceeds the other and when curves do 

not intersect. However, for one to be certain of the incremental value of one test over 

another it important to compare figures of merit statistically. 

The null hypothesis, H0, is that there is no difference in the figure of merit. An appropriate 

statistical test must be used to determine whether there is enough evidence to reject the null 

hypothesis. Focussing on the index, either AUC, pAUC or θ, it is always the figure of merit 

with the higher value that is superior (Tourassi, 2010). It is conventional to look for statistical 

significance at α=0.05; this controls the probability of Type I error, where modalities are not 

found to be the same if they are indeed different; and the Type II error, that they are not 

found to be different if they are indeed statistically similar. 

All of the empirical work evaluated in this thesis considers paired data; i.e. the same cases 

were exposed to the same set of modalities and observers. 

 

PVijk = NTθ ij − (NT −1)θ ij(k )

 25 



Ph.D. Thesis by Published Works University of Salford 
 

Objective 2 

 

Develop a consistent and reliable method for image display and 

response capture in free-response studies. 
 

 

Paper 1 describes the development of a reliable tool for the collection of free-response data. 

This was integral to the completion of the empirical works (Papers 2, 3, 5 & 7) completed for 

this thesis. ROCView was used as the sole data collection tool for all free-response studies. 

 

Identifying the Task 
The empirical work used CT images of varying image quality, either within a single CT 

system, or from a range of SPECT/CT systems. In each study the images from each system 

depicted the same set of lesions in the same anatomical position. Additionally, all studies 

used a conventional MRMC design, so all images from all the imaging modalities being 

compared were viewed by the same group of observers. Consequently it was necessary to 

randomise the order in which the images were displayed to the groups of observers; this 

would reduce the dependence of the order the images were displayed on the figure of merit 

achieved. 

It is important to qualify that in all the empirical works described the CT images were 

displayed singularly. This deviates from the clinical routine of reporting images but the 

method was consistent throughout and substantial effort was made to ensure that lesions 

were shown at maximum visibility and at the same anatomical position. This was 

occasionally complicated by variation in the reconstructed slice, as per Paper 5. In this 

example the localisations were classified as LL and NL marks by two different acceptance 

radii, 20 and 40 pixels. In this case there was minor inflation of the FOM with the larger radii, 

suggesting that some marks were incorrectly being classified as LL with a lax proximity 

criterion.  

Access to suitable participants is a barrier to conducting an observer study with optimal 

statistical power. Low numbers of observers dictate that the caseload requirements on each 

individual observer can be high. Improving the researchers access to participants, and 
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improving the participants’ access to images was thought to be a suitable step to performing 

studies with good statistical power. 

 

Development of ROCView 
In 2009 the author and Stephen Thompson developed ROCView, with intellectual input from 

the supervisory team at the University of Salford, as a prototype software solution to data 

collection in free-response studies. The software was initially developed to run on a single 

PC that had to be transported to the location where the image evaluations would be 

completed. The software was adapted in 2010 to run as a web-service, hosted by eUKHost. 

This had a significant improvement in access to participants. Initially, only a single observer 

could complete an image evaluation at one time, and with image evaluations typically lasting 

45minutes to 1 hour, this would incur a lot of supervision time for the researcher. Developing 

ROCView as a web-service allowed large numbers of observers to complete the same 

study, using the same set of images, concurrently. The imaging laboratory at the University 

of Salford allowed 14 observers to use ROCView concurrently, on the same specification of 

monitor. 

The web-based nature of ROCView was particularly valuable to Paper 7 where the research 

was completed in five different countries without the need for specialist software to be 

installed or for a PC to be transported around Europe. The data collection period was 

completed in a very short period of time and many evaluations were completed concurrently. 

This type of data collection process can be limited by the variation in specification of monitor. 

For the research conducted in Paper 7, each centre was required to perform a monitor 

calibration to ensure that the display quality was adequate for the image evaluation task. 

There were only minor variations between each centre. However, it is more difficult to control 

ambient lighting, but previous research on the impact on diagnostic performance is not 

conclusive on the effect on soft-copy reading (Goo et al., 2004; Park et al., 2008; Pollard, 

Chawla, Delong, Hashimoto, & Samei, 2008; Uffmann et al., 2005). 

 

Key Functionality of ROCView 
To satisfy the requirements of the free-response paradigm the following key aspects of 

functionality were required: 

• Selection of an appropriate rating scale 

• Simple lesion localisation method 
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• Simple confidence scoring method 

• Setting the ‘Truth’ 

• Variable proximity criterion 

• Reliable storage of data 

• Easy extraction and manipulation of data for JAFROC analysis 

Ordinal (discrete category) and quasi-continuous rating scales were supported to allow 

observers to rate confidence3. Rating scales are used to allow the observer to provide a 

numeric rating of confidence on the perceived likelihood of disease presence (Chakraborty, 

2002) and it is important to provide both categories of scale since there is no optimal scale 

that suits all studies (Rockette & Gur, 2008). Despite the value of rating scales for helping to 

define the full range of sensitivity and specificity on the basis of threshold, a scale is rarely 

truly representative of the clinical task (Zou et al., 2007). 

Lesion localisation was a simplistic task in ROCView, where all localisations were made with 

individual mouse clicks. Hovering over the desired localisation and selecting ‘remove click’ 

could remove unwanted localisations. Once this localisation had been made a pop-up box 

appeared with the chosen rating scale. The ordinal scale was presented to the observer as a 

series of selectable buttons marked 1-5 and with statements of increasing confidence (Table 

8). These rating scales were used in Papers 2 and 3. The feedback from observers was 

mixed with this design of scale and although it was deemed easy to use from a practical 

(point and click) viewpoint, some observers did not feel comfortable assigning a statement to 

each localisation. Novice observers were used in both of these studies and it is likely that 

they do not regularly provide a verbal/written statement in clinical tasks, while they may also 

be unfamiliar with research tasks of this nature. However, an ROC/FROC response can also 

be unfamiliar to expert observers so the significance of the type of rating scale used may be 

in question and therefore requires further investigation. Consequently a decision was made 

to use quasi-continuous scales for future work. This category of rating scale is enabled by a 

slider-bar (Figure 8). 

  

3 The choice of rating scale was determined by the researcher at the beginning of each study.  
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Rating Example 1 Example 2 

1 Very unlikely a lesion is present Not at all confident 

2 Unlikely a lesion is present Not very confident 

3 A lesion may be present Fairly confident 

4 Likely a lesion is present Confident 

5 Very likely a lesion is present Very Confident 

 

Table 8: Two examples of discrete rating scale employed by ROCView. Statements were accompanied by a 
rating of 1-5 once the localisation and rating had been completed and listed next to the image being evaluated. 

 

 

Figure 8: The slider-bar quasi-continuous rating scale that appeared as a pop-up box following a localisation. 
Moving the slider further to the right indicated a higher level of confidence. The marker containing 1 indicates that 
this is the first localisation on this case. 

 

The slider-bar received positive feedback from the observers completing the studies 

reported in Papers 5 and 7 due to ease of use and a lack of ambiguity in ratings. As with the 

ordinal scales a numerical rating appeared on-screen with each localisation as a list. 

However, the 100-point data were not analysed as being quasi-continuous and were re-

sampled to 10-point rating scale. It can be seen from Figure 8 that the slider-bar scale is 

unmarked (i.e. no graduations) and it has been previously suggested that observers are poor 

at effectively utilising scales that have a large range of rating points (Rockette & Gur, 2008). 

The efficacy of re-binning continuous data to a discrete scale of 1-5, 1-10 and 1-20 bins of 

equal width has been assessed; it was found not to cause a significant difference in the 

result generated while producing data that is suitable for reliable curve fitting (Hadjiiski et al., 

2007). For Papers 3, 5 & 7, the data were re-binned to 10 equal width bins of 10 ratings. 
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Once the mark-rating pairs have been created it is important to be able to classify the marks 

as either LL or NL. This requires two separate functions; (i) setting the ‘truth’ status for each 

study, and (ii) using a proximity criterion to classify marks as LL or NL. For all the empirical 

works in this thesis the researcher established the truth status. While this is acceptable for 

phantom images where the location of lesions has been tightly controlled and recorded, for 

clinical images it may require a radiologist to perform this task. However, it must be re-

iterated that any images used must have had the true disease status established and the 

‘truth’ must not be subject to variable interpretation. 

In ROCView, completing each study and marking, with mouse clicks, the centre of each 

lesion with high precision, created the truth. The process was similar to that experienced by 

the observers completing the image evaluations, but no confidence score was given. 

ROCView records the x-y coordinate of all localisations and it is the coordinates generated 

under the administrator account that are used as the reference marks. In each study, the 

mark-rating pairs made by each observer (participant) are compared to the truth on the basis 

of the x-y coordinates. 

The proximity criterion employed was an acceptance radius (AR). The AR emanated from 

the pixel of the mouse click for each localisation, classifying localisations as LL if they fell 

within the radius, and as NL otherwise. The classification of mark-rating pairs is not 

performed until the researcher initiates the download of the stored FROC data. When this is 

done the researcher has the opportunity to select the AR size. This can be useful in the 

assessment of observer accuracy, or when the pixel size (spatial resolution) of the 

modalities or tests being compared is not equal and one wishes to assess the impact of a 

tight/relaxed proximity criterion. This was the case in Paper 5, where a 20-pixel and 40-pixel 

AR were used due to the variation in pixel size between the SPECT/CT systems being 

compared. 

Data download is a simplistic procedure where the researcher must select the required 

study, the observers who have completed the evaluations, the AR size and whether to 

download LL or NL marks. Following this, only minor adjustment is required for the file to be 

read by the JAFROC software (current version 4.2). A truth sheet, stating the number of 

lesions in each case, must also be supplied. 

 

Future Developments to ROCView 
ROCView will continue to be used in medical imaging research. A move into radiographic 

imaging, still using a phantom has recently begun. A phantom study of lesion detection on 
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postero-anterior chest X-rays has required to additional functions to be added to the 

software; (i) a blanking image (noise/snow) to prevent the observer from seeing changes in 

lesions positions as the image changes and (ii) a grey-scale inversion function, similar to that 

found in a picture archiving and communications system (PACS). 

It may be necessary to adapt the software to use digital imaging and communications in 

medicine (DICOM) standard images. If this was the case it may also be necessary to 

implement an ‘off-line’ version of the software due to the large file size associated with series 

of CT images and singular radiographic images. 

One of the major limitations of the work completed for this PhD by PW is the method of 

image display. Single CT image slices were used for evaluation in all of the empirical works. 

This is an obvious deviation from a typical evaluation of a CT examination, where all images 

would be evaluated sequentially. If ROCView were to be updated to allow this it would also 

be necessary to design a volumetric proximity criterion that applied to a series of slices (3D) 

rather than a single slice (2D). 

 

Other Studies and Future Work using ROCView 
Preliminary reports have been made for a further three papers using ROCView (Jessop et 

al., 2014; Vamvakas, Hogg, Thompson, Manning, & Szczepura, 2013; Wareing, Hogg, 

Thompson, Manning, & Szczepura, 2013). The author is currently completing a study of 

radiographic imaging of the chest. Applications are also expected in mammography to 

coincide with the Diagnostic Imaging Research Programme at the University of Salford. 
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Objective 3 

 

Assess the potential for lesion detection and dose and image 

quality optimisation in a range of CT and SPECT/CT systems. 
 

 

An Appropriate Test Tool 
The ethical considerations of this work have been previously discussed; however, it is worth 

re-affirming that work of this nature (repeatedly exposing the same subject for the purpose of 

dose optimisation) is not suitable for a patient population. The phantom used in the empirical 

works permitted repeated exposures without any concern of the harmful effect of radiation. 

The phantom (“Lungman” N1 Multi-purpose chest phantom, Kyoto Kagaku Company 

Limited, Japan) used has an intricate internal structure that seeks to simulate the vascular 

network within the lungs. This can be removed from the main body of the phantom so that 

simulated lesions can be placed at any position within the vascular structure. 

 

Figure 9: The anthropomorphic chest phantom used in the empirical works (Lungman N1 Multi-Purpose Chest 
Phantom; Kyoto Kagaku Company Limited Online, www.kyotokagaku.com/products). 

The images provided by a CT acquisition of this phantom made for an observer study with a 

suitable level of difficulty. An example of the images produced can be found in Appendix C – 

Paper 3 and Appendix E – Paper 5. The observers were generally impressed with the 

representation provided by the phantom. However, a frequent comment and accepted 

limitation of the phantom is a lack of respiratory motion. 
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Method Outline 
The method used in all the empirical works was based on the same core steps. Literature 

searching completed for Paper 2 revealed that there is an approximately even distribution of 

lesions throughout the thorax (nodules in human subjects) with a higher proportion (70%) 

found peripherally (within 2cm of the pleura) (Pauls et al., 2008; Rubin et al., 2005; Wright et 

al., 1996; Xu, Lou, Zhang, Pan, & Zhang, 2007). However, literature review of lesion size 

and density was less conclusive (Kang et al., 2008; Pauls et al., 2008; Rubin et al., 2005; 

Wormanns et al., 2004; Xu et al., 2007) (Table 9) and therefore a range of lesions was used 

in the research. 

Study Mean Size 

Measurement (mm) 

Locations Hounsfield Unit 

(HU) Density 

(Kang et al., 2008) 8.1±8.8   

(Marten & Grabbe, 2003)   20-60 

(Pauls et al., 2008) 7.3 53% Apical 

47% Lower 

-121.6 

(Rubin et al., 2005) 5.1±2.3 71% Peripheral 

29% Central 

 

(Wormanns et al., 2004) 7.4±4.5  35±16.3 

(Wright et al., 1996) Majority <5 28% Upper 

44% Middle 

28% Lower 

 

(Xu et al., 2007) 67% <5 Peripheral if within 

2cm of pleura 

 

 

Table 9: Characteristics of lesion size, location and density. 

 

Testing the Method 
Access to clinical SPECT/CT systems can be limited due to the availability of staff and 

scanner time during normal working hours. It was therefore imperative that the method was 

tested thoroughly in the research environment at the University of Salford prior to beginning 

the empirical work in a clinical environment. 

A modern CT scanner (Toshiba Aquilion 16-slice MDCT) was used to assess the potential 

for dose optimisation in CT by a variation of acquisition parameters. This would also provide 

an opportunity to test ROCView for display and response capture and also to perform an 

analysis of data. 
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Scanning in a single CT unit allows an opportunity for lesion configurations to be 

represented in the same anatomical position and in the same slice number since no physical 

movement of the phantom is required between acquisitions; the table of the CT scanner 

performs the only movement that occurs. Between each CT acquisition the table position 

was set to zero to ensure the same start point for each scan. This would ensure that lesion 

appearances within the resultant images were ‘matched’. 

In this first empirical work (Paper 2) there were eight variations of acquisition protocol; two 

variants of helical pitch and four variants of tube current while all other acquisition and image 

reconstruction parameters remained constant. A decision was also made to look at case-

based rather than lesion-based decisions in the analysis, using the DBM-MRMC method. 

Unfortunately, this led to a reduction in statistical power. In addition, using eight different 

‘modalities’ for comparison in either JAFROC or DMB-MRMC analysis exceeds what is 

statistically satisfying and the large number of inter-comparisons of statistical similarity can 

be difficult to interpret.4 In this study the case-based analysis showed no statistical 

difference in lesion detection on the basis of changing the acquisition parameters. The 

overall outcome was that dose optimisation was possible. However, it is accepted that a 

failure to reject the null hypothesis does not mean that the alternative hypothesis is true. 

 

Dose Optimisation in a Single Hybrid System 
In nuclear medicine the CT component of a hybrid system is used for attenuation correction 

(AC), lesion localisation or diagnosis. When performing a scan with the primary objective of 

AC the acquisition parameters should be set to incur the lowest dose to the patient, as 

several previous works have shown that the acquisition parameters used have no 

measurable impact on the quality of AC provided (Kamel et al., 2002; Preuss et al., 2008; 

Wells et al., 2012). However, low-dose data should not be overlooked and there is 

compelling evidence that incidental findings can be detected on these low-resolution images. 

With this in mind, the focus of Paper 3 was to evaluate the influence of tube current on the 

ability of observers to accurately localise simulated lesions on the resultant CT images of a 

scan performed for AC. In this work, twenty observers evaluated images from four different 

tube current settings, searching for lesions of different spherical sizes and density. 

Observers were made aware of the case mix and general lesion characteristics. 

4 Since the completion of the empirical works there has been discussion with Professor Dev Chakraborty of 
Pittsburgh University, Pennsylvania, to discuss what to do with this type of analysis. Although this new 
development is beyond the scope of this PhD thesis, a new JAFROC analysis, termed crossed-modality, has 
been developed to deal with the analysis of two co-existing factors. 
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The SPECT/CT system evaluated in Paper 3 is commonly used in practice. Many of the 

image acquisition and reconstruction parameters are fixed with very little operator input. 

However, the tube current and rotation speed are selectable. The tube current range of 1, 

1.5, 2 and 2.5mA sounds small and the difference in dose received by the patient may seem 

insignificant given the small range. However, in hybrid imaging the tube rotation time can be 

long 23.1 or 30 seconds, so the effective mAs, accounting for pitch, can be considerably 

reduced if using the lowest tube current. 

In this study the data collection method was identical to that in Paper 2. However, on this 

occasion the data were analysed using the JAFROC method, taking lesion-based decisions 

into account. Despite the tube current range, lesion detection was statistically equal at each 

dose level, suggesting that dose could be optimised at the lowest tube current setting. This 

was an encouraging result when the primary purpose of the acquisition is AC. Even if lesion 

detection had been statistically superior at a higher tube current, the justification of using a 

higher dose acquisition for AC would have been questionable if the same primary objective 

(reliable AC) could be achieved with a lower dose. 

 

Comparing Multiple SPECT/CT Systems 
Following a successful evaluation of a single SPECT/CT system in Paper 3, the method was 

applied to a series of SPECT/CT systems, representing the current range of SPECT/CT 

systems available in clinical practice. Paper 5 was the most challenging empirical work to 

complete, but also the most rewarding and the paper that has the most valuable impact to 

the nuclear medicine community. Using the described method, the phantom was imaged on 

five SPECT/CT systems in different geographic locations. The logistics of this study dictated 

that the phantom was only loaded with one configuration of lesions, yielding a low number of 

cases for the free-response study. It would have been impractical to load the phantom with 

lesions and move it between sites on more than one occasion. 

The outcome of this work suggested that the detection of incidental findings as a result of the 

CT acquisition parameters used was subject to significant variation, with some SPECT/CT 

systems offering good lesion detectability and others offering poor lesion detectability. 

Although the review of the CT data is not the primary purpose of the investigation it does 

suggest that a patient population may receive a different quality of examination, depending 

on the SPECT/CT system and the acquisition parameters in operation. However, it is 

important to look beyond this examination in isolation and consider what may happen to a 

patient if images are reviewed and incidental findings are revealed. The images being 
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reviewed are generally low-resolution and not of the diagnostic standard associated with a 

conventional CT scan. Therefore it is almost certain that patients with incidental findings will 

be sent for further imaging, thus increasing the dose. If the incidental finding turns out to be 

of clinical significance, then it is a worthwhile exposure. However, if the incidental finding is a 

false positive identification, as a result of an interpretation of the low-resolution images then 

the efficacy of reviewing the images acquired for attenuation correction is called into 

question since this end result could be wasted resources, increased radiation dose to the 

patient and potential risks of unnecessary treatment. This is a niche area of practice but 

some parallels can be drawn with low-dose lung cancer screening; this will be discussed 

later on. 

A low number (n=27) of cases were used in this study, but since it is a phantom study the 

low number of cases is not a problem since there is no case variability. Furthermore, a large 

number of observers were used (n=21) to reduce variability. The observers used were all 

nuclear medicine practitioners studying a hybrid imaging module as part of the Postgraduate 

Diploma in Nuclear Medicine, but in terms of image interpretation they would not be classed 

as expert observers. The issue of expertise and access to suitable observers are evaluated 

further in Paper 7. 

 

Summary 

A significant amount of work has looked at the technical performance and capability of both 

CT and SPECT/CT systems, focussing on physical measures of image quality and the 

quality of AC provided. However, the author believes that the work collated for this PhD by 

published works represents the first observer studies of the low-resolution CT images that 

are acquired in SPECT/CT imaging. The method used is reliable, despite the use of single 

CT images rather than a contiguous set of image data. 
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Objective 4 

 

Assess the role of the novice observer for suitability in observer 

performance research. 
 

 

The search experience and expectations of radiologists are suppressed in phantom studies 

since the environment is different to that within which they normally work. Consequently it is 

possible that suitably trained novices could perform to an equal standard if appropriate 

training is given. In all the empirical papers completed for this thesis the level of CT 

experience (years working in CT, hybrid or conventional) was generally very low; this is 

summarised in Table 10. 

Study Observers Experience (years) Mean 

Paper 2 9 0, 1, 0, 2, 4, 7, 0, 1, 16 3.44±5.25 

Paper 3 20 18, 2, 0, 9, 0, 0, 0, 24, 8, 6, 0, 0, 7, 0, 0, 5, 0, 0, 0, 20 4.45±6.74 

Paper 5 21 1, 0, 0, 1, 0, 0, 4, 2.5, 2, 1.5, 0, 2.5, 0.5, 2, 0.5, 0, 0, 1.5, 1.5, 1, 3 1.17±1.17 

Paper 7 34 ALL 0 (undergraduate students) - 

 

Table 10: Summary of observer experience in the empirical works completed for this PhD by PW. 

 

The key aspect of the empirical works reported here is the lack of case variability. This was 

enforced by the use of the anthropomorphic chest phantom, and while this has many 

obvious benefits, particularly in relation to the level of control in the work, it is limited in its 

representation of the clinical task. Radiologists, typically considered expert observers, have 

a well-developed mental picture of normality as a result of caseload experience. This does 

not apply in phantom work since it is far enough removed from real patient images. This 

immediately removes a distinct advantage that an expert observer typically holds over a 

novice observer. In Paper 7 the ability of the novice observer was put to the test. Although 

the method was limited (i.e. knowledge of prevalence in the second evaluation), it showed 

that observer performance could improve at a second read, without being able to place an 

exclusive authority on a reason for this. 

 37 



Ph.D. Thesis by Published Works University of Salford 
 

It can be seen from Table 10 that Paper 7 was the first empirical work to use novice 

observers exclusively. As in the other empirical works the novices were evaluating low-

resolution CT images acquired for AC – of which they had no previous experience. Prior to 

the first image evaluation the observers were trained in the use of ROCView and shown 

lesion and phantom appearances. In the second evaluation the number of NL localisation 

was reduced by more than 50%. As previously mentioned, it was not possible to determine a 

singular cause for this since there were several contributory factors in the second evaluation 

(experience gained, knowledge of prevalence, training in ROC/FROC methods). 

More work is required to investigate the value of the novice observer in observer 

performance. A suitable strategy to assess the novice observer requires careful planning 

such that they could be compared to expert performance. A test and re-test strategy, 

exposing novices and experts to the same series of images on two occasions, with no other 

confounding variables, may allow a better assessment of the novice group. A remaining 

issue would be the experienced gained from a first evaluation, but at least it would then be 

possible to state whether or not the experience gained was significant on observer 

performance. 
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Wider Applications 1 

 

Low-dose Lung Cancer Screening and Incidental Findings 
 

 

The empirical work described in this thesis focuses on a niche area of imaging that has 

previously had minimal investigation. The acquisition parameters used for AC imaging are 

vastly different to those used for diagnostic CT. However, low-dose imaging is also 

performed in CT for lung cancer screening. 

Study Acquisition Protocol 

Paper 5 (AC) 

SPECT/CT System 5 

120kVp, Pitch 0.94, 50mAs, 16x0.75mm detector 

configuration, 5mm reconstructed slice, 1.5 s rotation time 

ELCAP (LCS) 

(Henschke, 2011) 

140kVp, Pitch 2, 40mAs, <0.8 s rotation time, 10mm slice 

reconstruction  

ELCAP (LCS) 

(Cagnon et al., 2006) 

120kVp, Pitch 0.98-2, 50-160mA or 26.7-59.2mAs, <1.0s 

rotation time, 64x0.6mm-4x2.5mm configuration, 2.0-3.2mm 

slice reconstruction at 1.8-2.0mm intervals 

Mayo Clinic (LCS) 

(Cagnon et al., 2006) 

120kVp, Pitch 1.5, 40mAs, 5mm slice acquisition, 3.75mm 

slice reconstruction 

NLST (LCS) 

(Aberle, Berg, et al., 2011) 

120-140kVp, 20-30mAs, 1.0-3.2mm slice reconstruction at 

1.0-2.5mm intervals 

PLuSS (LCS) 

(Wilson et al., 2008) 

140kVp, 40-60mAs, 2.5mm slice reconstruction 

NELSON (LCS) 

(Ru Zhao et al., 2011) 

80-140kVp, Pitch 1.3, variable mAs, 16x0.75mm detector 

configuration 

Depiscan (LCS) 

(Blanchon et al., 2007) 

100-140kVp, Pitch 1-1.5, 20-100mA (variable mAs), 1-

1.5mm detector configuration, 1.25-3mm slice reconstruction 
Table 11: A comparison of CT acquisition parameters used in lung cancer screening (LCS) and for attenuation 
correction (AC). 

 

Some of the reported CT acquisition parameters used for lung cancer screening (LCS) are 

comparable with the low-resolution imaging used for attenuation correction (Table 11); 

however, spatial resolution is not compromised to the same extent and a larger matrix size 
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and smaller field of view are used in LCS since there is no requirement to match 

transmission and emission data. 

A comparison of LCS and AC imaging protocols can be found in Table 11. It is clear that 

acquisition protocols for LCS show the same level of variation as those for AC; this is more 

than likely representative of the time period over which these screening trials have been 

conducted and also the ever changing CT technology. The Early Lung Cancer Action Project 

(ELCAP) commenced in 1992 and CT has seen dramatic change in this time. Table 11 

reflects this, where two different ELCAP protocols are presented (Cagnon et al., 2006; 

Henschke, 2011). It is interesting to note there is still scope for variation in the CT acquisition 

protocols, despite calls for standardisation (Cagnon et al., 2006). 

The controversy of low-dose CT for LCS (radiation dose balanced against clinical benefit) is 

similar to that of searching AC images for incidental findings in terms of the efficacy of the 

procedure. On the negative side, there are reports of misdiagnosis and over-diagnosis (Patz 

et al., 2014; Veronesi et al., 2012) whereas other work highlights the reduced morbidity and 

mortality rates associated with LCS (Humphrey et al., 2013). 

Of further interest, a review paper of LCS revealed that in most cases, but not all, the 

radiologist would search for incidental findings when reviewing the datasets (Humphrey et 

al., 2013). The key finding was that 7.5% of all LCS CT scans contained an abnormality of 

clinical significance that was not suspicious for lung cancer. It is now interesting to compare 

this finding to those of a clinical study of incidental findings for patients undergoing CT based 

attenuation correction during a myocardial perfusion scan. In this study a large proportion of 

patients (119/200; 59.5%) demonstrated incidental findings, however the number considered 

of potentially major clinical significance was low, 21 in 200 (10.5%) (Goetze et al., 2006). On 

initial inspection these figures sound similar and it may be expected that similar numbers of 

major incidental findings may be discovered. However, while the LCS patients receive a full 

thoracic CT, the patients reported in the study of Goetze et al., (2006) only received a CT 

scan of a small area (typically 13cm) that covered the heart and thus provided a suitable 

region for AC. So, it could be hypothesised that if the patients attending for MPI had received 

a full thoracic CT the number of significant findings could have been larger. This leads to a 

pertinent question; why? The LCS patients are classed as asymptomatic but are considered 

to be a sample of the population that are ‘at risk’ (i.e. exposure to tobacco or asbestos) 

(Nanavaty, Alvarez, & Alberts, 2014). Patients attending for MPI will be there on the basis of 

clinical suspicion of coronary artery disease (CAD) or ischemic heart disease (IHD) and 

could be considered symptomatic. Larger studies of incidental findings revealed on AC 

images would be required to confirm if the trend observed by Goetze et al., (2006) is 
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representative; a sample of 200 patients is small in comparison to the larger LCS trials; for 

example the National Lung Cancer Screening Trial (NLST) conducted in the US used 53,454 

patients to compare the value of CT and CXR in the detection of lung cancer (Aberle, 

Adams, et al., 2011). 

A recent clinical study of incidental findings has built on the early work of Goetze et al. 

(2006). In the study of (Coward et al., 2014) the AC images of patients undergoing MPI were 

assessed at a number of different imaging centres, using a variety of acquisition parameters, 

reflective of those discussed in Paper 5. In their study there were incidental findings in 27% 

of patients (423/1819) compared to 59.5% (119/200) of (Goetze et al., 2006). However, the 

number of findings to be of clinical significance was much lower (0.2%) in the more recent 

study. The authors ultimately question the overall benefit of reviewing the low-resolution CT 

images when the nature of the images (low quality) means that disease cannot necessarily 

be ruled out even if it is not identified on the images. 

The work of Coward et al. (2014) is consistent with Paper 5, where the SPECT/CT systems 

used in the study did not appear to perform equally due to the quality of the images 

produced. Although the authors did not have matched cases in all centres, since this was a 

patient based study, they found that the positive predictive value (PPV) was significantly 

better for the SPECT/CT system with diagnostic capability compared to those that are 

considered low-resolution. 

Incidental findings are described as an ‘inevitable consequence’ of screening (Edey & 

Hansell, 2009). While it is accepted that life-threatening disease must be acted upon, they 

can obscure the findings of a trial. The authors then continue to explain that investigators 

completing The Dutch Belgian Randomised Lung Cancer Screening Trial (NELSON) found a 

much lower prevalence of incidental findings (1%) and considered that the systematic review 

of extra-thoracic pathology should not be performed on low-dose screening of the chest 

(Edey & Hansell, 2009). This may be a difficult conclusion to accept when there is a chance 

of detecting a clinically significant incidental finding, but this must be balanced against the 

costs of searching for and detecting incidental findings (time, money, radiation dose, stress 

to the patient). 
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Wider Applications 2 

 

FROC and Radiographic Trauma Imaging 
 

 

It is the aim of the researcher to develop ROCView to allow the FROC method to be applied 

to the reporting of radiographic trauma images by radiographers. With the continuing 

developments in radiology, where the radiologist is trying to relinquish responsibility of tasks 

that could be completed by others, it is important that the performance of those taking on 

these reporting roles is monitored. Radiographers are currently involved in the reporting of 

CT head and fluoroscopic examinations in addition to radiographic image appearances. 

However, the scope of pathology available to report upon in CT and fluoroscopy is likely to 

be too broad for a tightly controlled FROC evaluation and it is the authors opinion that it is 

better suited to a single pathology type in a focussed group of patients (i.e. fracture 

detection). That is not to say that FROC methodology cannot be used effectively in other 

areas of imaging, but the methods currently being employed by the researcher are better 

suited to fracture detection on trauma imaging. 

If the development of ROCView for monitoring fracture detection by radiographers is 

successful, it is anticipated that it should be possible to provide a similar self-assessment as 

mammography PERFORMS (PERsonal performance in Mammographic Screening) (Gale, 

2010) to help reporting radiographers monitor their trauma image interpretation skills. 
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Conclusions 

The free-response method has been successfully applied to dose and image optimisation in 

low-resolution CT. Scope for dose reduction is evident in the empirical work and it should 

now be the priority to extend the method to the clinical setting. Lesion detection can be 

highly variable in low-resolution CT images as a result of the CT acquisition parameters 

selected by the operator, but controversy still surrounds the use of low-resolution images 

when interpretation of CT data for incidental findings is not the primary reason for the 

exposure. Future work will look to assess new CT technology, such as iterative 

reconstruction, focussing on the impact this has on lesion detection. 
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	Table 3: Example data of 200 CXR images, with 50% containing a solitary pulmonary nodule. Observer decisions are distributed across the scale in the expected manner, with the majority of diseased cases scored with high confidence and the majority of n...
	Figure 5: The ROC curve plotted from the operating points calculated in Table 3.
	Figure 6: The fitted ROC curve from the rating data in Table 3.
	The data in Table 3 have been used to perform curve fitting. If the data are not normally distributed a parametric calculation (fitted) of area may be misleading and the empirical method is preferable (Krzanowski & Hand, 2009).
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	‘Mark-Rating’ Pairs

	Under the FROC paradigm all suspicious areas of an image that exceed the observer’s reporting criteria threshold are localised; this is termed a ‘mark’. A confidence score accompanies each mark, in the same way that an entire case is scored in the ROC...
	Proximity Criterion

	For a FROC study to be reliable, all localisations should be within a clinically acceptable distance from the true site of disease (Chakraborty, 2002). Localisations that are close enough to the true site of disease are classified as lesion localisati...
	One of the more common criteria used is the acceptance radius. This is applicable to studies of small spherical lesions, as described in Papers 2, 3, 5 & 7, where the radii length emanates from the centre of the lesion. For this type of criterion it h...
	The FROC Curve

	The FROC curve is a plot of non-lesion localisation fraction (NLF, the total number of NL ratings above a threshold divided by the total number of images), against the lesion localisation fraction (LLF, which is the total number of LL marks above a th...
	The FROC curve (Figure 7) always starts at the origin (0,0) and ends at coordinates of (λ,ν), where λ is the mean number of noise sites (no lesion) per image and ν is the probability that a lesion is considered for marking (Chakraborty & Yoon, 2008). ...
	The Alternative FROC (AFROC) Curve

	The AFROC curve is a hybrid plot of the ROC and FROC curves. It takes the x-axis from the ROC curve, FPF, and the y-axis from the FROC curve, LLF. On the AFROC curve the FPF is the fraction of diseased cases with NL marks. The AFROC curve has much mor...
	Table 4: Raw FROC data is presented, listing the LL and NL ratings and also the highest rating, regardless of classification. These values can now be binned to allow curve construction.
	Constructing Curves from FROC data

	Three types of curve can be constructed from FROC data. This will be illustrated using an example from Paper 5. The raw FROC data for a single observer is presented in Table 4. In this study there were 26 cases, 17 abnormal cases containing 29 lesions...
	Table 5: The raw FROC data from Table 4 has been binned and operating points calculated for each decision threshold.
	The operating points for a FROC curve are calculated in a similar way to those for a ROC curve, but they are normalised to a different denominator. The LLF is normalised to the number of lesions while the NLF remains normalised to the number of cases....
	Table 6: The FROC curve operating points calculated from the raw FROC data. Note that this includes all ratings (LL and NL) and not just the highest rating. Therefore there are 35 ratings used in these calculations compared to 26 for the highest ratin...
	Table 7: The unique operating points for the AFROC curve for the FROC data in Table 4.
	The operating points of the AFROC curve (Table 7) for this single observer example can be extracted from Table 5 and Table 6. Data were crosschecked against JAFROC software version 4.2 (www.devchakraborty.com) for confirmation of accuracy.
	Figure 7: The three curves produced from the raw FROC data in Table 4; A, the highest rating inferred ROC curve; B, the FROC curve; and C, the AFROC curve. Operating points are marked on all curves. The area under the ROC curve is 0.853 and the area u...
	Data Analysis

	The previous examples have evaluated the data and curves produced by a single observer and a single imaging modality. When conducting an observer performance study it is normal to use a group of observers who interpret all images from all the imaging ...
	Multi-Reader Multi-Case (MRMC) Analysis

	The aim of conducting an MRMC study is to reduce the influence of observer experience and variability in the difficulty of the images being interpreted such that any observed difference between the modalities being compared is not masked (Chakraborty,...
	The Dorfman-Berbaum-Metz Method

	The DBM-MRMC method is the most commonly applied method in ROC analysis, where the AUC is used as the FOM and data are tested using analysis of variance (ANOVA) (Chakraborty, 2011b; Zanca et al., 2012). The DBM method separates the variables of case v...
	Where c is the number of cases, AÛCij is the AUC estimate for modality i and reader j computed for ALL data. AÛCij(k) is the estimate with case k removed (Hillis, 2010).
	The number of pseudovalues is determined by the multiplication of ijk; for example, an ROC study of two imaging modalities (i), five observer (j) and fifty cases (k) would generate 500 psuedovalues. A random effect ANOVA is then applied to the series ...
	Once the model has been estimated the next natural step is to use data to determine whether the modalities being compared have statistically different diagnostic performance. Variance components typically of , observer factor,  case factor, and both a...
	The variance components are estimated via ANOVA, which determines whether the relative difference between modalities is due to chance. The final outcome of the analysis is still a single figure of merit for each modality (and observer). The benefit of...
	After the jackknife procedure is complete, and the overall figure of merit calculated it is necessary to calculate the 95% confidence intervals. The Fisher F-statistic is calculated with a p-value, where the p-value is the probability that the F-stati...
	where  is the mean of the sample, Z is a constant derived from the t-distribution with n-1 degrees of freedom (t-distribution 20DF, Z=2.086), S is the best estimate of population standard deviation and n is the number of values in the sample. For the ...
	for a mean ( of 0.602, a standard deviation of 0.116 in a sample of 21 (n) observers. This calculation derives lower and upper 95% confidence intervals of 0.54959582 and 0.65488597, correct to five decimal places for random readers and fixed cases.
	Jackknife Alternative Free-Response Receiver Operating Characteristic (JAFROC) Method

	The JAFROC method is the equivalent method for analysing free-response rating data. The JAFROC figure of merit is the trapezoidal are under the AFROC curve, (. The JAFROC figure of merit is defined by:
	Where Xi is the highest noise rating (mark on a normal case) for a case i, Yj is the rating for the jth lesion, NN is the number of normal cases, and NL is the number of lesions. The psi (() function is the comparison of the highest rated noise rating...
	The significance testing procedure is identical to the DBM method previously described. The only difference to the DBM procedure for ROC analysis is the figure of merit used; ROC figure of merit is the AUC whereas the JAFROC figure of merit is ( (thet...
	Where the pseudovalue for each modality i, observer j and case k is defined by PVijk, NT is the total number of cases, (ij is the figure of merit for modality i and observer j for all data, and (ij(k) is the figure of merit with case k removed – ident...
	Comparing Figures of Merit

	Visual inspection of ROC/AFROC curves can be valuable for comparing the diagnostic performance of different tests if they are obviously different. As previously mentioned this is easy when the sensitivity and specificity of one test exceeds the other ...
	The null hypothesis, H0, is that there is no difference in the figure of merit. An appropriate statistical test must be used to determine whether there is enough evidence to reject the null hypothesis. Focussing on the index, either AUC, pAUC or (, it...
	All of the empirical work evaluated in this thesis considers paired data; i.e. the same cases were exposed to the same set of modalities and observers.
	Objective 2
	Develop a consistent and reliable method for image display and response capture in free-response studies.

	Paper 1 describes the development of a reliable tool for the collection of free-response data. This was integral to the completion of the empirical works (Papers 2, 3, 5 & 7) completed for this thesis. ROCView was used as the sole data collection tool...
	Identifying the Task

	The empirical work used CT images of varying image quality, either within a single CT system, or from a range of SPECT/CT systems. In each study the images from each system depicted the same set of lesions in the same anatomical position. Additionally...
	It is important to qualify that in all the empirical works described the CT images were displayed singularly. This deviates from the clinical routine of reporting images but the method was consistent throughout and substantial effort was made to ensur...
	Access to suitable participants is a barrier to conducting an observer study with optimal statistical power. Low numbers of observers dictate that the caseload requirements on each individual observer can be high. Improving the researchers access to p...
	Development of ROCView

	In 2009 the author and Stephen Thompson developed ROCView, with intellectual input from the supervisory team at the University of Salford, as a prototype software solution to data collection in free-response studies. The software was initially develop...
	The web-based nature of ROCView was particularly valuable to Paper 7 where the research was completed in five different countries without the need for specialist software to be installed or for a PC to be transported around Europe. The data collection...
	Key Functionality of ROCView

	To satisfy the requirements of the free-response paradigm the following key aspects of functionality were required:
	 Selection of an appropriate rating scale
	 Simple lesion localisation method
	 Simple confidence scoring method
	 Setting the ‘Truth’
	 Variable proximity criterion
	 Reliable storage of data
	 Easy extraction and manipulation of data for JAFROC analysis
	Ordinal (discrete category) and quasi-continuous rating scales were supported to allow observers to rate confidence2F . Rating scales are used to allow the observer to provide a numeric rating of confidence on the perceived likelihood of disease prese...
	Lesion localisation was a simplistic task in ROCView, where all localisations were made with individual mouse clicks. Hovering over the desired localisation and selecting ‘remove click’ could remove unwanted localisations. Once this localisation had b...
	Table 8: Two examples of discrete rating scale employed by ROCView. Statements were accompanied by a rating of 1-5 once the localisation and rating had been completed and listed next to the image being evaluated.
	Figure 8: The slider-bar quasi-continuous rating scale that appeared as a pop-up box following a localisation. Moving the slider further to the right indicated a higher level of confidence. The marker containing 1 indicates that this is the first loca...
	The slider-bar received positive feedback from the observers completing the studies reported in Papers 5 and 7 due to ease of use and a lack of ambiguity in ratings. As with the ordinal scales a numerical rating appeared on-screen with each localisati...
	Once the mark-rating pairs have been created it is important to be able to classify the marks as either LL or NL. This requires two separate functions; (i) setting the ‘truth’ status for each study, and (ii) using a proximity criterion to classify mar...
	In ROCView, completing each study and marking, with mouse clicks, the centre of each lesion with high precision, created the truth. The process was similar to that experienced by the observers completing the image evaluations, but no confidence score ...
	The proximity criterion employed was an acceptance radius (AR). The AR emanated from the pixel of the mouse click for each localisation, classifying localisations as LL if they fell within the radius, and as NL otherwise. The classification of mark-ra...
	Data download is a simplistic procedure where the researcher must select the required study, the observers who have completed the evaluations, the AR size and whether to download LL or NL marks. Following this, only minor adjustment is required for th...
	Future Developments to ROCView

	ROCView will continue to be used in medical imaging research. A move into radiographic imaging, still using a phantom has recently begun. A phantom study of lesion detection on postero-anterior chest X-rays has required to additional functions to be a...
	It may be necessary to adapt the software to use digital imaging and communications in medicine (DICOM) standard images. If this was the case it may also be necessary to implement an ‘off-line’ version of the software due to the large file size associ...
	One of the major limitations of the work completed for this PhD by PW is the method of image display. Single CT image slices were used for evaluation in all of the empirical works. This is an obvious deviation from a typical evaluation of a CT examina...
	Other Studies and Future Work using ROCView

	Preliminary reports have been made for a further three papers using ROCView (Jessop et al., 2014; Vamvakas, Hogg, Thompson, Manning, & Szczepura, 2013; Wareing, Hogg, Thompson, Manning, & Szczepura, 2013). The author is currently completing a study of...
	Objective 3
	Assess the potential for lesion detection and dose and image quality optimisation in a range of CT and SPECT/CT systems.
	An Appropriate Test Tool


	Figure 9: The anthropomorphic chest phantom used in the empirical works (Lungman N1 Multi-Purpose Chest Phantom; Kyoto Kagaku Company Limited Online, www.kyotokagaku.com/products).
	Method Outline

	The method used in all the empirical works was based on the same core steps. Literature searching completed for Paper 2 revealed that there is an approximately even distribution of lesions throughout the thorax (nodules in human subjects) with a highe...
	Table 9: Characteristics of lesion size, location and density.
	Testing the Method
	Dose Optimisation in a Single Hybrid System
	Comparing Multiple SPECT/CT Systems

	A significant amount of work has looked at the technical performance and capability of both CT and SPECT/CT systems, focussing on physical measures of image quality and the quality of AC provided. However, the author believes that the work collated fo...
	Objective 4
	Assess the role of the novice observer for suitability in observer performance research.

	The search experience and expectations of radiologists are suppressed in phantom studies since the environment is different to that within which they normally work. Consequently it is possible that suitably trained novices could perform to an equal st...
	Table 10: Summary of observer experience in the empirical works completed for this PhD by PW.
	The key aspect of the empirical works reported here is the lack of case variability. This was enforced by the use of the anthropomorphic chest phantom, and while this has many obvious benefits, particularly in relation to the level of control in the w...
	It can be seen from Table 10 that Paper 7 was the first empirical work to use novice observers exclusively. As in the other empirical works the novices were evaluating low-resolution CT images acquired for AC – of which they had no previous experience...
	More work is required to investigate the value of the novice observer in observer performance. A suitable strategy to assess the novice observer requires careful planning such that they could be compared to expert performance. A test and re-test strat...
	Wider Applications 1
	Low-dose Lung Cancer Screening and Incidental Findings

	The empirical work described in this thesis focuses on a niche area of imaging that has previously had minimal investigation. The acquisition parameters used for AC imaging are vastly different to those used for diagnostic CT. However, low-dose imagin...
	Table 11: A comparison of CT acquisition parameters used in lung cancer screening (LCS) and for attenuation correction (AC).
	Some of the reported CT acquisition parameters used for lung cancer screening (LCS) are comparable with the low-resolution imaging used for attenuation correction (Table 11); however, spatial resolution is not compromised to the same extent and a larg...
	A comparison of LCS and AC imaging protocols can be found in Table 11. It is clear that acquisition protocols for LCS show the same level of variation as those for AC; this is more than likely representative of the time period over which these screeni...
	The controversy of low-dose CT for LCS (radiation dose balanced against clinical benefit) is similar to that of searching AC images for incidental findings in terms of the efficacy of the procedure. On the negative side, there are reports of misdiagno...
	Of further interest, a review paper of LCS revealed that in most cases, but not all, the radiologist would search for incidental findings when reviewing the datasets (Humphrey et al., 2013). The key finding was that 7.5% of all LCS CT scans contained ...
	A recent clinical study of incidental findings has built on the early work of Goetze et al. (2006). In the study of (Coward et al., 2014) the AC images of patients undergoing MPI were assessed at a number of different imaging centres, using a variety ...
	The work of Coward et al. (2014) is consistent with Paper 5, where the SPECT/CT systems used in the study did not appear to perform equally due to the quality of the images produced. Although the authors did not have matched cases in all centres, sinc...
	Incidental findings are described as an ‘inevitable consequence’ of screening (Edey & Hansell, 2009). While it is accepted that life-threatening disease must be acted upon, they can obscure the findings of a trial. The authors then continue to explain...
	Wider Applications 2
	FROC and Radiographic Trauma Imaging

	It is the aim of the researcher to develop ROCView to allow the FROC method to be applied to the reporting of radiographic trauma images by radiographers. With the continuing developments in radiology, where the radiologist is trying to relinquish res...
	If the development of ROCView for monitoring fracture detection by radiographers is successful, it is anticipated that it should be possible to provide a similar self-assessment as mammography PERFORMS (PERsonal performance in Mammographic Screening) ...
	Conclusions
	The free-response method has been successfully applied to dose and image optimisation in low-resolution CT. Scope for dose reduction is evident in the empirical work and it should now be the priority to extend the method to the clinical setting. Lesio...
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